Hail ATLANTIS..!Aerodynamic
Turbines
Lighter and
Afloat with
Nautical
Technologies and
Integrated
Servo-control Generation
Program Description:Accessible U.S. offshore wind is estimated at more than 25 quads per year (a quad is one quadrillion BTUs, equivalent to 45 million tons of coal, 1 trillion cubic feet of natural gas, or 170 million barrels of crude oil). Nearly 60% of that wind energy—the equivalent of the entire U.S. annual electricity consumption—blows across waters more than 200 feet deep, an area that cannot be economically accessed today. Floating offshore wind turbine (FOWT) technology has tremendous promise to access wind resources in these areas, but the current state of the art for FOWT is too massive and expensive for practical deployment. ATLANTIS seeks to design radically new FOWTs by maximizing their rotor-area-to-total-weight ratio while maintaining or ideally increasing turbine generation efficiency; build a new generation of computer tools to facilitate FOWT design; and collect real data from full and lab-scale experiments to validate the FOWT designs and computer tools. The program encourages the application of control co-design (CCD) methodologies that integrate all relevant engineering disciplines at the start of the design process, with feedback control and dynamic interaction principles as the primary drivers of the design. CCD methodologies enable designers to analyze the interactions of FOWTs’ aero-, hydro-, elastic-, electric-, economic-, and servo-system dynamics, and propose solutions that permit optimal FOWT designs not achievable otherwise.
Innovation Need:FOWTs are currently designed to be large and heavy to replicate more familiar onshore wind turbine dynamics, maintain stability, and survive storms. However, this approach fundamentally limits how inexpensive FOWTs can ever become. Radically new designs that do not require a massive floating platform – applying the CCD approach of substituting mass by control systems – are needed. To design innovative, economically competitive FOWTs, researchers must overcome several significant technical barriers: insufficient current knowledge of how FOWT sub-system dynamics interact; insufficient computer tools for dynamic simulation; and a dearth of experimental data. ATLANTIS will address these technical barriers while exploring radically new FOWT design concepts that minimize mass and maximize productive rotor area to provide economical offshore wind power.
Potential Impact:ATLANTIS projects will aim to develop new and potentially disruptive innovations in FOWT technology to enable a greater market share of offshore wind energy, ultimately strengthening and diversifying the array of domestic energy sources available to Americans.
ARPA-E (Advanced Research Projects Agency - Energy), U.S. Department of Energy web page
https://arpa-e.energy.gov/t...es/programs/atlantisIncludes online links to various offshore wind energy innovation projects in the ATLANTIS portfolio.
[This message has been edited by rinselberg (edited 12-04-2022).]